1 Find the equation of the line passing through $(-1,-9)$ and (3,11). Give your answer in the form $y=m x+c$.

2 (i) Find the points of intersection of the line $2 x+3 y=12$ with the axes.
(ii) Find also the gradient of this line.

3 (i) Express $x^{2}-6 x+2$ in the form $(x-a)^{2}-b$.
(ii) State the coordinates of the turning point on the graph of $y=x^{2}-6 x+2$.
(iii) Sketch the graph of $y=x^{2}-6 x+2$. You need not state the coordinates of the points where the graph intersects the x-axis.
(iv) Solve the simultaneous equations $y=x^{2}-6 x+2$ and $y=2 x-14$. Hence show that the line $y=2 x-14$ is a tangent to the curve $y=x^{2}-6 x+2$.

4 Find, algebraically, the coordinates of the point of intersection of the lines $y=2 x-5$ and $6 x+2 y=7$.

5 (i) Find the gradient of the line $4 x+5 y=24$.
(ii) A line parallel to $4 x+5 y=24$ passes through the point $(0,12)$. Find the coordinates of its point of intersection with the x-axis.

6
(i)

Fig. 10
Fig. 10 shows a sketch of the graph of $y=\frac{1}{x}$.
Sketch the graph of $y=\frac{1}{x-2}$, showing clearly the coordinates of any points where it crosses the axes.
(ii) Find the value of x for which $\frac{1}{x-2}=5$.
(iii) Find the x-coordinates of the points of intersection of the graphs of $y=x$ and $y=\frac{1}{x-2}$. Give your answers in the form $a \pm \sqrt{b}$.

Show the position of these points on your graph in part (i).

7 Find, in the form $y=a x+b$, the equation of the line through $(3,10)$ which is parallel to $y=2 x+7$.

